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Abstract Fidelity for states of spin- 1
2 particles moving in a static spherically symmetric

traversable wormhole spacetime is discussed. When the centroid of the corresponding wave
packet moves along a specified path in the gravitational field, both acceleration and gravity
cause to transform the state of the particle. For circular orbits of the centroid coinciding the
throat of wormhole, the fidelity between initial and final states of the whole system as well
as the fidelity of the spin parts of the states are equal to the unity. This means that, the error
in quantum communication diminishes on such a paths. For fixed elapsed proper time and
angular momentum of the centroid, there always exists one circular orbit with determined
radius on which the fidelity of spin parts is minimum. The fidelity for wave packets moving
along a radial geodesic toward the throat of wormhole is also discussed. In this case, the
centroid traverses the wormhole and reaches to the other side, with a perfect fidelity for the
spin parts, though the fidelity for the states of the whole system is not perfect.

Keywords Local inertial frame · Wigner rotation · Density matrix · Fidelity · Wormhole
spacetime

1 Introduction

Relativistic quantum information theory may become a necessary theory in the near future.
Therefore, it is important to study all those processes that might affect quantum entangle-
ment. Entanglement is a strange feature of quantum theory and leads to a nonlocal correla-
tion called the Einstein-Podolsky-Rozen (EPR) correlation [3]. The entangled subsystems
are correlated beyond what is classically possible [4]. It is this feature that enables quantum
communication. Recently, a number of papers [1, 5, 9, 14] have discussed how entanglement
is affected by the Lorentz transformation in the jargon of special relativity.
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The question of how entanglement is affected by a gravitational field is discussed by
Terashima and Ueda by extending the special relativistic considerations to general relativ-
ity [18]. They have discussed a mechanism of spin decoherence caused by spacetime cur-
vature for spin- 1

2 particles moving in a gravitational field. Also, the spin entropy production
for particles with arbitrary spin moving in a general static spherically symmetric spacetimes
is discussed. In general relativity, a gravitational field represented by spacetime curvature,
cause to break the global rotational symmetry. Therefore, the spin in general relativity can
be defined only locally by invoking the rotational symmetry of the local inertial frame. Con-
sequently, the motion of the particle in a curved spacetime is accompanied by a continues
succession of Lorentz transformations [19]. It is shown that this effect gives rise to a spin
entropy production that is unique to general relativity. This means that even if the state of the
particle is pure at one spacetime point, it becomes mixed at another spacetime point. The
gravitational spin entropy production for particles with arbitrary spin moving in a curved
spacetime is also discussed [13].

In this paper which can be considered as an extension of our previous work [13], we
discuss the fidelity between the initial and final states of spin- 1

2 particles moving in a sta-
tic traversable wormhole spacetime. In Sects. 2 and 3, based on that paper, we first review
the subject of spin decoherence for particles moving in a curved spacetime and then apply
the results for a traversable wormhole spacetime. Wormholes have a non-trivial topology
and can connect two different regions of the Universe. Thus, the study of communication
through the throat of wormholes can be important. Note that we have considered traversable
wormholes that have no event horizon and there is no singularity inside them. Thus, they al-
low two-way passages of photons and massive particles through them [10]. Suppose that
a member of an entangled pair falls into the horizon of a black hole. How is such a state
describe by quantum theory? Is the correlation observable? There is no clear answer to this
problem [15]. However, there is not such a problem for wormholes. Falling particles traverse
the throat, keeping their correlations with particles remaining outside. These results are in-
teresting enough to motivate us consider wormhole spacetimes as an alternative example for
discussing the quantum communication in curved spacetimes. We will consider circular and
radial paths for the centroid, separately.

There is no experimental evidence for wormholes, and theoretically they suffer the prob-
lem of exotic matter that is required to support them [10]. However, based on the recent
astrophysical observations, it is generally accepted that the Universe at the present is ex-
panding with acceleration. To explain such the cosmological behavior in the framework of
general relativity, we require to suppose that approximately 70% of the Universe is com-
posed of dark energy. There is a substantial body of literature on this issue that the problem
of existing of wormholes links to the problem of dark energy [12, 17].

2 Transformation of State of a Particle Moving in a Gravitational Field

First of all we need to define the spin in a gravitational field described by a metric gμν(x).
However, in a curved spacetime the curvature causes to break the global rotational symme-
try. Therefore, the spin in general relativity can be defined only locally by switching to an
inertial frame at each point and then invoking the rotational symmetry of the local inertial
frame.

As is well known, a local inertial frame at each point of spacetime is introduced through
a tetrad ea

μ(x) defined by

ea
μ(x)eb

ν(x)gμν(x) = ηab, (1)
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where ηab = diag(−1,1,1,1) is the Minkowski metric [11] and Latin indices run over
the four inertial-coordinate labels 0,1,2,3, while, Greek letters run over the four general-
coordinate labels. Here, a particle is specified by the tetrad e0

μ, which relates the local time
to a global time. Of course, since we cannot uniquely choose the time coordinate to define
the positive energy, the definition of a particle is not unique [2]. Now, a particle with spin 1

2

in the curved spacetime is defined as a particle whose one-particle states furnish the spin- 1
2

representation of the local Lorentz group.
The one-particle momentum eigenstate is described as |p,σ 〉 where p =

(
√|p|2 + m2c2,p) is the four momentum of the particle as measured in the local inertial

frame and σ = ± 1
2 denotes the z-components of the spin. Then a pure state for the particle

with positive energy, has the form

|ψ〉 =
∑

σ

∫
d3pCσ (p)|p,σ 〉, (2)

where amplitudes Cσ (p) determine the admixture of the one particle momentum eigenstates
in the wave packet [8]. Normalizing |ψ〉 to unity implies

∑

σ

∫
d3p|Cσ (p)|2 = 1, (3)

provided that 〈p′, σ ′|p,σ 〉 = δ3(p′ − p)δσ ′σ .
Now, consider that the centroid of the wave packet corresponding to (2) is located at

point xμ and is moving with a four-momentum qa(x) = ea
μ(x)(mdxμ/dτ) as measured in

the local inertial frame at the point xμ. It is required to assume that the spacetime curvature
does not change drastically within the spacetime scale of the wave packet that describes a
state of the particle. For forced motions of the centroid there exists an acceleration

aa(x) = ea
μ(x)(uν(x)∇νu

μ(x)), (4)

measured in the local inertial frame. While, for geodesic motions aa(x) = 0.
After an infinitesimal proper time dτ , the centroid moves to a new point x ′μ = xμ +

uμ(x)dτ . Then, the wave packet is described by a local inertial frame at the new point x ′μ.
In the new local inertial frame, the momentum of the centroid changes to qa(x ′) = qa(x) +
λa

b(x)qb(x)dτ , where

λa
b(x) = ζ a

b(x) + κa
b(x), (5)

where

ζ a
b(x) = − 1

mc2
[aa(x)qb(x) − qa(x)ab(x)], (6)

is the acceleration related part, existing even in special relativity, and

κa
b(x) = uμ(x)(eb

ν(x)∇μea
ν(x)), (7)

is the curvature related part, that is the change in the local inertial frame along the path.
It must be noted that λa

b given by (5) satisfies the condition λab = −λba , then it can
describe a local Lorentz transformation �a

b(x) which is represented infinitesimally as
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�a
b(x) = δa

b + λa
b(x)dτ . Corresponding to �a

b(x), there exists a unitary operator, de-
noted by U(�a

b(x)), which transforms the momentum eigenstate as

|p,σ 〉 → U(�(x))|p,σ 〉. (8)

It can be shown that the state U(�)|p,σ 〉 is also the eigenstate of the momentum operator
but with the eigenvalue �p [20] and we can write at every point

U(�(x)|p,σ 〉 =
√

(�p)0

p0

∑

σ ′
Dσ ′σ (W(�(x),p))|�p,σ ′〉, (9)

where Wa
b(�(x),p) is the Wigner rotation and Dσ ′σ (W(�(x),p)) is its spin- 1

2 irreducible
representation. The infinitesimal Wigner rotation is represented as

Wa
b(�(x),p) = δa

b + ϑa
bdτ, (10)

where ϑ0
0(x) = ϑ0

i (x) = ϑi
0(x) = 0 and

ϑi
k(x) = λi

k(x) + λi
0(x)pk(x) − λk0(x)pi(x)

p0(x) + mc
, (11)

where i and k run over the three spatial inertial frame labels (1,2,3) [18]. Note that ϑii = 0.
The corresponding spin- 1

2 representation of (10) is

Dσ ′σ (W(�(x),p)) = δσ ′σ + iϑ23(x)(J1)σ ′σ dτ + iϑ31(x)(J2)σ ′σ dτ

+ iϑ12(x)(J3)σ ′σ dτ, (12)

where {J1, J2, J3} are the generators of the rotation group in a 2-dimensional representa-
tion [20].

When the centroid moves along a path xμ(τ) from x
μ

i = xμ(τi) to x
μ

f = xμ(τf ), the
motion of the wave packet is accompanied by a Lorentz transformation given by

�(xf , xi) = T exp

[∫ xf

xi

λ (x(τ )) dτ

]
, (13)

and, a Wigner rotation as

W(�(xf , xi),p) = T exp

[∫ xf

xi

w (x(τ )) dτ

]
, (14)

where T is the time-ordering operator and λ and w are matrices that their components are
given by (5) and (11), respectively.

Suppose that in the local inertial frame at the initial point x
μ

i , the state is denoted by
|ψ(i)〉 which is given by (2). Then, in the local inertial frame at the final point x

μ

f , the state
will be

|ψ(f )〉 = U(�(xf , xi))|ψ(i)〉 =
∑

σ

∑

σ ′

∫
d3p

√
(�p)0

p0
Cσ (pa)

× Dσ ′σ (W(�(xf , xi),p))|�p,σ ′〉, (15)

which naturally is a pure state.
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Fig. 1 An embedding surface
for a traversable wormhole. Each
circle denotes actually a sphere
and the circle of minimum radius
denotes the throat surface. The
generator lines indeed indicate
the radial geodesics

3 Wigner Rotation for Spin- 1
2 Particles Moving in a Traversable Wormhole

Spacetime

Here we consider the background geometry to be a traversable wormhole described by the
metric

ds2 = −c2e2(r)dt2 + dr2

1 − B(r)

r

+ r2
(
dθ2 + sin2 θdφ2

)
(16)

where B(r) and (r) are called shape function a red shift function, respectively. The shape
function controls the shape of wormholes as viewed in an embedding diagram. Moreover,
the equation B(r0) = r0 determines the radius of the throat that is the minimum or lower limit
of the radial coordinate, that is r ≥ r0. Then, traversable wormholes have no event horizon.
Figure 1 shows the embedding diagram for a traversable spherical symmetric wormhole.
The circle with the minimum radius denotes the throat which actually is a spherical surface.
The generator lines in Fig. 1 indicate radial geodesics and imply that two-way passages
through the throat are possible.

The asymptotic flatness requirement for the metric (16) requires that limr→∞ B(r)

r
=

limr→∞ (r) = 0. The red-shift function (r) is chosen to be finite everywhere, thus there
is no surface of infinite red shift.

We require to introduce a local inertial frame at each point in the spacetime (16). There-
fore, we choose the tetrad defined in (1) as

e0
t = e−(r), e1

r =
√

1 − B(r)

r
, e2

θ = 1

r
, e3

φ = 1

r sin θ
, (17)

with all the other components being zero.
In this section we find the Lorentz transformation �(xf , xi) as well as the Wigner ro-

tation W(�(xf , xi),p) for spin- 1
2 particles moving in a wormhole spacetime described

by (16). Since a general motion of the centroid can be considered as a combination of circu-
lar and radial motions, we argue on these motions, separately.

3.1 Circular Motion around the Throat

Suppose that the centroid of the wave packet is moving with a constant speed v on a circle
with radius r around the throat of wormhole. Regarding the spherical symmetry of the met-
ric, we can choose the plane of motion to be the equatorial plane θ = π

2 . Thus, the path can



1378 Int J Theor Phys (2008) 47: 1373–1385

be one of the circles shown in Fig. 1. Since v is measured by an observer in the local inertial
frame, who uses inertial coordinate labels (0,1,2,3), we can write

v = c
dx3

dx0
= c

e3
φdφ

e0
t cdt

= re−(r) dφ

dt
. (18)

Then, the components of the four-momentum of the centroid in the local inertial frame at
any point are

q0 = γmc, q1 = q2 = 0, q3 = γmv. (19)

Moreover, after some manipulation we see that in this case, the acceleration (20) has only
one non-zero component

a1(r) = c2γ 2

√

1 − B(r)

r

(
′ − 1

r

γ 2 − 1

γ 2

)
(20)

which lead to the following non-zero components for ζ a
b ,

ζ 0
1 = ζ 1

0 = cγ 3

√

1 − B(r)

r

(
′ − 1

r

γ 2 − 1

γ 2

)
,

(21)

ζ 1
3 = −ζ 3

1 = −vγ 3

√

1 − B(r)

r

(
′ − 1

r

γ 2 − 1

γ 2

)
.

These give rise to a generalized Thomas precession [18] in the considered spacetime.
On the other hand, applying (7) for the tetrad (17), we obtain the following non-zero

components for κa
b(x),

κ0
1(r) = κ0

1(r) = −cγ′(r)

√

1 − B(r)

r
, (22)

and

κ1
3(r) = −κ3

1(r) = γ
v

r

√

1 − B(r)

r
. (23)

Then, regarding (5), we see that λa
b(x) has only four non-zero components as

λ1
0(r) = λ0

1(r) =
(

′(r) − 1

r

)
γ (γ 2 − 1)c

√

1 − B(r)

r
, (24)

λ1
3(r) = −λ3

1(r) = −
(

′(r) − 1

r

)
γ 3v

√

1 − B(r)

r
. (25)

These components as substituted in (11) lead to the following non-zero components for ϑa
b

ϑ1
3 = −ϑ3

1 = −c

(
′(r) − 1

r

)√

1 − B(r)

r

×
[

q(q2 + 1) − q2
√

q2 + 1
p

√
p2 + 1 + 1

]

, (26)
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where p = |p|
mc

and q = q3

mc
. Then the infinitesimal Wigner rotation (12), becomes

Dσ ′σ (W(�)) = δσ ′σ + iϑ(J2)σ ′σ dτ, (27)

where ϑ = ϑ31 = −ϑ1
3. Correspondingly, the finite Wigner rotation becomes

W(�(τf , τi)) = T exp

[∫ τf

τi

ϑJ2dτ

]
. (28)

This readily gives

W(�(τ)) = exp [iϑτJ2], (29)

where τ = τf − τi . Note that time ordering can easily be done since ϑ is time independent.
The elements of D(W(�(τ)),p) can be obtained by using the Wigner’s formula [16]. We
have

D =
(

cos �
2 sin �

2

− sin �
2 cos �

2

)
(30)

where

� = −cτ

(
′(r) − 1

r

)√

1 − B(r)

r

×
[

q(q2 + 1) − q2
√

q2 + 1
p

√
p2 + 1 + 1

]

, (31)

which apparently vanishes at the throat where B(r) = r .

3.2 Radial Motion

Now let us consider that the centroid of the wave packet moves with a velocity v along
a radial geodesic, say one of the generator lines in Fig. 1. As the figure indicates, in this
situation the centroid can traverse the throat. Since v is measured by an observer in the local
inertial frame, we can write

v = c
dx1

dx0
= c

e1
rdr

e0
t cdt

= e−(r)

√
1 − B(r)

r

dr

dt
. (32)

Then, we obtain in this case

q0 = γmc, q1 = γmv, q2 = q3 = 0, (33)

as the components of the four-momentum of the centroid.
Since the centroid moves along a geodesic, aa(x) = 0 and then according to (6) the

acceleration related part of (5) vanishes. However, after doing some manipulations we see
that the curvature related part κa

b has two non-zero components as

λ0
1(r) = λ1

0(r) = −γ c′(r)

√

1 − B(r)

r
, (34)
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which consists of a boost along the 1-axis. These elements as substituted in (13) constitute
a finite Lorentz transformation �. Of course, one should be care of time ordering, since in
this case r is a function of τ via radial timelike geodesics. However, note that for wormholes
with constant red shift function, ′ = 0, and so � becomes the unit transformation.

Applying (34) in (11), we conclude that all of the components of ϑi
k vanish and the

Wigner rotation simply becomes Wa
b = δa

b , which has a trivial spin- 1
2 representation as

Dσ ′σ (W(x)) = δσ ′σ .

4 Fidelity of the Initial and Final States

Suppose that in wormhole spacetime of previous section |ψ(i)〉 shows the state in a local
inertial frame located at xi and |ψ(f )〉 is the state in the local frame at final point xf . Here it
is convenient to discuss the fidelity F for these initial and final states. The concept of fidelity
is a basic ingredient in communication theory. For any given communication scheme the
fidelity is a quantitative measure of the accuracy of the transmission. Fidelity ranges over
the interval [0,1] such that F = 1 indicates a perfect transmission. So we refer to F = 1
as perfect fidelity. In the following we first discuss the fidelity for the states of the whole
system which we call it the total fidelity, denoted by Ft . Then, taking the trace over the
momentum, we argue on the fidelity for the spin part of the state which we call it the spin
fidelity indicated by Fs .

4.1 Total Fidelity

Both of the initial and the final states of the whole system are pure and to calculate the total
fidelity we apply the relation

Ft = 〈ψ(i)|ψ(f )〉〈ψ(f )|ψ(i)〉. (35)

Substituting from (2) and (15), we obtain

Ft =
∫

d3p

√
(�p)0

p0

×
∫

d3p′
√

(�p′)0

p′0 C†(�p)D(W,p)C(p)[D(W,p′)C(p′)]†C(�p′), (36)

where D = ( D↑↑ D↑↓
D∗↑↓ D↓↓

)
and C = ( C↑

C↓
)
.

For the circular motion around the throat, D(W,p) is given by (30). Moreover, the re-
quired Lorentz transformation � can be obtained in this case by substituting the elements
of the matrix λ from (24) and (25) in (13). Since these elements are independent of proper
time, the time ordering can readily be done. Then employing the generators of the Lorentz
group [7], and after doing some manipulation, we obtain

�(τ) = exp

⎡

⎢⎢⎢
⎣

⎛

⎜⎜⎜
⎝

0 ξτ 0 0

ξτ 0 0 ωτ

0 0 0 0

0 −ωτ 0 0

⎞

⎟⎟⎟
⎠

⎤

⎥⎥⎥
⎦

, (37)
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where ξ = λ1
0 and ω = λ1

3. Now it is important to note that on circular orbits coinciding
the throat of wormhole, where B(r) = r , the parameters ξ,λ and � all vanish. Thus �(τ) as
well as D(W,p) reduce to their corresponding unit matrices and, as we see from (36), the
total fidelity equals the unity implying the possibility of a perfect communication between
observers situated at the throat. Evidently, the calculation of total fidelity for an arbitrary
circular orbit is a complicated task that we do not follow here. Instead, in the next subsection
we will do this for the fidelity of the spin parts of the system.

For the radial motion as we discussed in Sect. 3.2, the Wigner rotation is trivial , however
there exists a Lorentz transformation. Thus we have a total fidelity as

Ft =
∫

d3p

√
(�p)0

p0

∫
d3p′

√
(�p′)0

p′0 C†(�p)C(p)C(p′)†C(�p′), (38)

where the Lorentz transformation � can be determined by using the elements given in (34).
Recall that for constant red shift function wormholes � reduces to the unit transformation
and the fidelity (38) becomes perfect.

4.2 Spin Fidelity

Corresponding to the initial state |ψ(i)〉 given by (2), there exists a density matrix as ρ(i) =
|ψ(i)〉〈ψ(i)|, which its trace over the momentum gives us a reduced density matrix for the
spin, that is

(�(i))σ ′σ =
∫

d3p〈p,σ ′|ρ(i)|p,σ 〉 =
∫

d3pCσ (p)C∗
σ ′(p) (39)

or

�(i) =
∫

d3pC(p)C†(p). (40)

Also, we can find the final reduced density matrix by taking the trace of ρ(f ) = |ψ(f )〉〈ψ(f )|
over the momentum, that is

�
(f )

σ ′σ =
∑

σ ′′σ ′′′

∫
d3pCσ ′′(pa)C∗

σ ′′′(pa)

× Dσ ′σ ′′(W(�(xf , xi),p))D∗
σσ ′′′(W(�(xf , xi),p)). (41)

This can be written in a more compact form as

�(f ) =
∫

d3p[D(W,p)C(p)][D(W,p)C(p)]†. (42)

It must be noted that though both the states, |ψ(i)〉 and |ψ(f )〉, are pure, but the reduced
densities �(i) and �(f ) are generally mixed. Even if in a special case �(i) is pure (for example
in (40) let C↓(p) = 0), the final reduced density will be mixed, as we see from (41). Then,
to calculate the spin fidelity we use the relation

Fs = tr(�(i)�(f )) + 2
√

det�(i) · det�(f )), (43)

which is valid only in 2 dimensions [6].
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For the circular motion around the throat, first note that (31) vanishes for the orbits clos-
ing the throat where B(r) = r . Then the matrix D(W,p) becomes the unit matrix and (42)
reduces to (40). This means, for circular orbits coinciding the throat, the initial reduced den-
sity matrix remains intact and we have Fs = tr(�(i)2

)+2det(�(i)) which identically equals 1.
One may argue that, � vanishes again, if the shape function satisfies the equation

′(r) = 1
r
. But, it can be shown that this violates the asymptotic flatness of the metric.

Now let us choose C = (
F(p)

0

)
. Then

�(i) =
(

1 0
0 0

)
, (44)

which apparently is a pure density matrix, and

�(f ) =
( |D↑↑|2 D↑↑D∗

↓↑

D↓↑D∗
↑↑ |D↓↑|2

)

= 1

2

(
1 + cos� −sin�

−sin� 1 − cos�

)

, (45)

where we have used (30) and the overline is defined as X = ∫
d3p|F(pa)|2X(pa) which

denotes the average over the momentum distribution. Now the fidelity (43) as evaluated for
(44) and (45) gives

Fs = 1

2
(1 + cos�). (46)

In order to evaluate the averages over the momentum distribution we choose a Gaussian
form for F(p), that is

F(p) =
√

αδ(p1)δ(p2)
√√

πmc
exp

[
−α2(p3 − q3)2

2m2c2

]
. (47)

By this choice we reach to

cos� = α√
π

∫
dpe−α2(p−q)2

cos�, (48)

where p = p3

mc
. Evidently, cos� vanishes as q → ∞, resulting Fs = 1

2 .
To follow the argument more precisely, we choose a constant red shift function as

(r) = 0 and a shape function as B(r) = rn
0

rn−1 where n is a positive integer and r0 de-
notes the radius of the throat. Then (31) reduces to

� = 2π

(
τ

τ0

)√
1

s2
− 1

sn+2

[

q(q2 + 1) − q2
√

q2 + 1
p

√
p2 + 1 + 1

]

, (49)

where τ0 is the proper time when a photon rotates once on a circle just coinciding the throat
and s = r

r0
≥ 1. By this � still there is no analytical solution for the integral (48). However,

some important results can be attained from a numerical approach. In Fig. 2, the spin fidelity
given by (46) is sketched versus a varying q but fixed τ and s. This curve, which is obtained
numerically, follows a damped fluctuation such that for q → ∞ it approaches to the average
value 1

2 . It must be noted that significant fluctuations occur for small q’s. Because, as q

grows the number of turns of the centroid around the throat increases. This leads eventually
to a saturation in the spin fidelity.
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Fig. 2 A sketch of Fs for fixed s and τ but varying q . Significant fluctuations occur for small values of q ,
while as q goes to large values the fidelity reaches to a saturated value 1

2

More interesting here is to study the fidelity (46) for a varying radius r but fixed q and τ .
Figure 3 shows the corresponding sketch. Note that s (= r

r0
) on the horizontal axis begins

with 1 which denotes the throat. As the figure shows, for circular paths coinciding the throat
we have a perfect spin fidelity Fs = 1, which can lead to an accurate quantum information
transmission. On the other hand, as a consequence of asymptotic flatness of wormhole, as
s → ∞ we again have a perfect fidelity. It is remarkable that there exists one minimum in
the fidelity for a certain circular path with radius rm given by

rm = smr0 =
(

n + 2

2

) 1
n

r0, (50)

where sm denotes the minimum and is obtained naturally as the root of the derivative of (49)
with respect to s. In Fig. 3 we have chosen n = 2, hence sm = √

2.
Finally, for the radial motion through the throat Dσ ′σ (W(x)) = δσ ′σ , and so the density

matrix remains intact, as is seen from (41). Thus Fs in (43) identically equals 1. Such a
result will be correct whether the red shift function is constant or not.

5 Conclusion

We generally proved that both acceleration and gravitation lead to a spin decoherence when
the centroid of the wave packet of spin- 1

2 moves on a specified path in a gravitational field.
Then we applied the result for a static spherically symmetric traversable wormhole. Absence
of any event horizon for wormholes considered and their non-trivial topology which allow
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Fig. 3 A sketch of Fs for fixed q and τ but varying s. Just at the throat (s = 1) the fidelity equals 1, sug-
gesting a perfect communication. For wormholes considered there exists one circle on which Fs is minimum.
Here n is chosen to be 2, then the minimum occurs at rm = √

2r0. As a consequence of asymptotic flatness
of wormhole, as s → ∞, Fs → 1

them to be traversable, motivate us to consider wormholes here, although some theoreti-
cal and experimental problems exist with them. We discussed circular forced motions and
radial geodesic motions of the centroid, separately. To measure the occurred spin decoher-
ence, we used the concept of fidelity which is a basic component in communication theory.
We discussed both the total fidelity and the spin fidelity between the initial an final states.
Our calculations showed that for circular paths coinciding the throat of wormhole the total
fidelity as well as the spin fidelity are perfect. This means that error in quantum communi-
cation diminishes along a circular path connecting two observers situated at the throat. We
proved that the spin fidelity depends on the angular momentum of the centroid, the proper
time during which the motion occurs and the radius of the path. For fixed proper time and
radius, as angular momentum grows the number of turns of the centroid around the throat
increases, then the spin fidelity reaches to a saturated value. While for fixed angular mo-
mentum and proper time, as the radius grows from the throat to the infinity, the spin fidelity
begins with the unity at the throat, then takes a minimum value at a determined radius and
finally returns to the unity far from the throat. Moreover, our calculations showed that there
is no spin decoherence for radial motions. Then in this case the spin fidelity always equals to
the unity. This means that quantum communication via the spin parts of the states can occur
perfectly along a radial geodesic connecting two observers each of them located in one of
the sides of wormhole. Of course, in this case the total fidelity is not generally perfect.
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